seed germination stages

Process of Seed Germination: 5 Steps (With Diagram)

The process of seed germination includes the following five changes or steps.

Such five changes or steps occurring during seed germination are: (1) Imbibition (2) Respiration (3) Effect of Light on Seed Germination(4) Mobilization of Reserves during Seed Germination and Role of Growth Regulators and (5) Development of Embryo Axis into Seedling.

(i) Imbibition:

The first step in the seed germination is imbibition i.e. absorption of water by the dry seed. Imbibition results in swelling of the seed as the cellular constituents get rehydrated. The swelling takes place with a great force. It ruptures the seed coats and enables the radicle to come out in the form of primary root.

Imbibition is accomplished due to the rehydration of structural and storage macromolecules, chiefly the cell wall and storage polysaccharides and proteins. Many seeds contain additional polysaccharides, not commonly found in vegetative tissues. Seeds packed dry in a bottle can crack it as they imbibe water and become swollen.

(ii) Respiration:

Imbibition of water causes the resumption of metabolic activity in the rehydrated seed. Initially their respiration may be anaerobic (due to the energy provided by glycolysis) but it soon becomes aerobic as oxygen begins entering the seed. The seeds of water plants, as also rice, can germinate under water by utilizing dissolved oxygen.

The seeds of plants adapted to life on land cannot germinate under water as they require more oxygen. Such seeds obtain the oxygen from the air contained in the soil. It is for this reason that most seeds are sown in the loose soil near the surface. Ploughing and hoeing aerate the soil and facilitate seed germination. Thus the seeds planted deeper in the soil in water-logged soils often fail to germinate due to insufficient oxygen.

(iii) Effect of Light on Seed Germination:

Plants vary greatly in response to light with respect to seed germination. The seeds which respond to light for their germination are named as photoblastic. Three categories of photoblastic seeds are recognized: Positive photoblastic, negative photoblastic and non-photoblastic. Positive photoblastic seeds (lettuce, tobacco, mistletoe, etc.) do not germinate in darkness but require exposure to sunlight (may be for a brief period) for germination.

Negative photoblastic seeds (onion, lily, Amaranthus, Nigella, etc.) do not germinate if exposed to sunlight. Non-photoblastic seeds germinate irrespective of the presence (exposure) or absence (non-exposure) of light.

In these light sensitive seeds, the red region of the visible spectrum is most effective for germination. The far-red region (the region immediately after the visible red region) reverses the effect of red light and makes the seed dormant. The red and far-red sensitivity of the seeds is due to the presence of a blue-coloured photoreceptor pigment, the phytochrome. It is a phycobiloprotein and is widely distributed in plants.

Phytochrome is a regulatory pigment which controls many light-dependent development processes in plants besides germination in light- sensitive seeds. These include photo-morphogenesis (light-regulated developmental process) and flowering in a variety of plants.

Phytochrome and Reversible Red-Far-red Control of Germination:

The pigment phytochrome that absorbs light occurs in two inter-convertible forms Pr and Pfr. Pr is metabolically inactive. It absorbs red light (660 nm.) and gets transformed into metabolically active Pfr (Fig. 4.10). The latter promotes germination and other phytochrome-controlled processes in plants. Pfr reverts back to Pr after absorbing far-red (730 nm.).

In darkness too, Pfr slowly changes to Pr. Owing to this oscillation of phytochrome between Pr and Pfr status, the system has been named as “reversible red—far-red pigment system” or in brief phytochrome system. Treatment with Red light (R) stimulates seed germination, whereas far-red light (FR) treatment, on the contrary, has an inhibitory effect.

Let US examine seed germination in positive photoblastic seeds e.g. lettuce (Lactuca sativa). When brief exposure of red (R, 660 nm.) and far-red (FR, 730, nm.) wave lengths of light are given to soaked seeds in close succession, the nature of the light provided in the last exposure determines the response of seeds. Exposure to red light (R) stimulates seed germination. If exposure to Red light (R) is followed by exposure to far-red light (FR), the stimulatory effect of Red light (R) is annulled.

This trick can be repeated a number of times. What is crucial for seed germination is the quality of light to which the seeds are exposed last. This also indicates that responses induced by red light (R) are reversed by far-red light (FR).

Whole of this can be shown as given ahead:

Light requirement for seed germination may be replaced by hormones such as gibberellins or cytokinins. Several development processes of plants controlled by phytochrome may be mimicked by appropriate hormones given singly or in combination with other hormones at the correct time.

(iv) Mobilization of Reserves during Seed Germination and Role of Growth Regulators:

During germination the cells of the embryo resume metabolic activity and undergo division and expansion. Stored starch, protein or fats need to be digested. These cellular conversions take place by making use of energy provided by aerobic respiration.

Depending upon the nature of the seed, the food reserves may be stored chiefly in the endosperm (many monocotyledons, cereal grains and castor) or in the cotyledons (many dicotyledons such as peas and beans). Thorough investigations in the mobilisation of reserves from the endosperm to the embryo via a shield-like cotyledon (scutellum) has been done in several cereal grains (Fig. 4.11).

The outer layer of special cells (aleurone layer) of endosperm produces and secretes hydrolyzing enzymes (such as amylases, proteases). These enzymes cause digestion i.e. breakdown of the stored food such as starch and proteins in the inner endosperm cells.

The insoluble food is rendered soluble and complex food is made simple. These simpler food solutions, comprising of sugars and amino acids thus formed, are diluted by water and passed towards the growing epicotyl, hypocotyl, radicle and plumule through the cotyledon.

Gibberellic acid plays an important role in initiating the synthesis of hydrolyzing enzymes. Gibberellin, therefore, promotes seed germination and early seedling growth. Assimilation of this food by the growing organ induces growth and the seedling soon assumes its ultimate shape.

It is very significant to note that the dormancy inducing hormone, abscisic acid (ABA), prevents the germination. The concentration of ABA has been shown to increase during the onset of dormancy of the embryo during seed development in several kinds of seeds.

When young embryos of cotton are removed and grown in culture, they continue to grow without the development of any dormancy. Dormancy in such cases can be induced by the addition of ABA at a crucial stage of growth.

(v) Development of Embryo Axis into Seedling:

After the translocation of food and its subsequent assimilation, the cells of the embryo in the growing regions become metabolically very active. The cells grow in size and begin divisions to form the seedling.

Process of Seed Germination: 5 Steps (With Diagram) The process of seed germination includes the following five changes or steps. Such five changes or steps occurring during seed


Our editors will review what you’ve submitted and determine whether to revise the article.

Germination, the sprouting of a seed, spore, or other reproductive body, usually after a period of dormancy. The absorption of water, the passage of time, chilling, warming, oxygen availability, and light exposure may all operate in initiating the process.

In the process of seed germination, water is absorbed by the embryo, which results in the rehydration and expansion of the cells. Shortly after the beginning of water uptake, or imbibition, the rate of respiration increases, and various metabolic processes, suspended or much reduced during dormancy, resume. These events are associated with structural changes in the organelles (membranous bodies concerned with metabolism), in the cells of the embryo.

Germination sometimes occurs early in the development process; the mangrove (Rhizophora) embryo develops within the ovule, pushing out a swollen rudimentary root through the still-attached flower. In peas and corn (maize) the cotyledons (seed leaves) remain underground (e.g., hypogeal germination), while in other species (beans, sunflowers, etc.) the hypocotyl (embryonic stem) grows several inches above the ground, carrying the cotyledons into the light, in which they become green and often leaflike (e.g., epigeal germination).

Seed dormancy

Dormancy is brief for some seeds—for example, those of certain short-lived annual plants. After dispersal and under appropriate environmental conditions, such as suitable temperature and access to water and oxygen, the seed germinates, and the embryo resumes growth.

The seeds of many species do not germinate immediately after exposure to conditions generally favourable for plant growth but require a “breaking” of dormancy, which may be associated with change in the seed coats or with the state of the embryo itself. Commonly, the embryo has no innate dormancy and will develop after the seed coat is removed or sufficiently damaged to allow water to enter. Germination in such cases depends upon rotting or abrasion of the seed coat in the gut of an animal or in the soil. Inhibitors of germination must be either leached away by water or the tissues containing them destroyed before germination can occur. Mechanical restriction of the growth of the embryo is common only in species that have thick, tough seed coats. Germination then depends upon weakening of the coat by abrasion or decomposition.

In many seeds the embryo cannot germinate even under suitable conditions until a certain period of time has lapsed. The time may be required for continued embryonic development in the seed or for some necessary finishing process—known as afterripening—the nature of which remains obscure.

The seeds of many plants that endure cold winters will not germinate unless they experience a period of low temperature, usually somewhat above freezing. Otherwise, germination fails or is much delayed, with the early growth of the seedling often abnormal. (This response of seeds to chilling has a parallel in the temperature control of dormancy in buds.) In some species, germination is promoted by exposure to light of appropriate wavelengths. In others, light inhibits germination. For the seeds of certain plants, germination is promoted by red light and inhibited by light of longer wavelength, in the “far red” range of the spectrum. The precise significance of this response is as yet unknown, but it may be a means of adjusting germination time to the season of the year or of detecting the depth of the seed in the soil. Light sensitivity and temperature requirements often interact, the light requirement being entirely lost at certain temperatures.

Seedling emergence

Active growth in the embryo, other than swelling resulting from imbibition, usually begins with the emergence of the primary root, known as the radicle, from the seed, although in some species (e.g., the coconut) the shoot, or plumule, emerges first. Early growth is dependent mainly upon cell expansion, but within a short time cell division begins in the radicle and young shoot, and thereafter growth and further organ formation (organogenesis) are based upon the usual combination of increase in cell number and enlargement of individual cells.

Until it becomes nutritionally self-supporting, the seedling depends upon reserves provided by the parent sporophyte. In angiosperms these reserves are found in the endosperm, in residual tissues of the ovule, or in the body of the embryo, usually in the cotyledons. In gymnosperms food materials are contained mainly in the female gametophyte. Since reserve materials are partly in insoluble form—as starch grains, protein granules, lipid droplets, and the like—much of the early metabolism of the seedling is concerned with mobilizing these materials and delivering, or translocating, the products to active areas. Reserves outside the embryo are digested by enzymes secreted by the embryo and, in some instances, also by special cells of the endosperm.

In some seeds (e.g., castor beans) absorption of nutrients from reserves is through the cotyledons, which later expand in the light to become the first organs active in photosynthesis. When the reserves are stored in the cotyledons themselves, these organs may shrink after germination and die or develop chlorophyll and become photosynthetic.

Environmental factors play an important part not only in determining the orientation of the seedling during its establishment as a rooted plant but also in controlling some aspects of its development. The response of the seedling to gravity is important. The radicle, which normally grows downward into the soil, is said to be positively geotropic. The young shoot, or plumule, is said to be negatively geotropic because it moves away from the soil; it rises by the extension of either the hypocotyl, the region between the radicle and the cotyledons, or the epicotyl, the segment above the level of the cotyledons. If the hypocotyl is extended, the cotyledons are carried out of the soil. If the epicotyl elongates, the cotyledons remain in the soil.

Light affects both the orientation of the seedling and its form. When a seed germinates below the soil surface, the plumule may emerge bent over, thus protecting its delicate tip, only to straighten out when exposed to light (the curvature is retained if the shoot emerges into darkness). Correspondingly, the young leaves of the plumule in such plants as the bean do not expand and become green except after exposure to light. These adaptative responses are known to be governed by reactions in which the light-sensitive pigment phytochrome plays a part. In most seedlings, the shoot shows a strong attraction to light, or a positive phototropism, which is most evident when the source of light is from one direction. Combined with the response to gravity, this positive phototropism maximizes the likelihood that the aerial parts of the plant will reach the environment most favourable for photosynthesis.

Germination, the sprouting of a seed, spore, or other reproductive body, usually after a period of dormancy. The absorption of water, the passage of time, chilling, warming, oxygen availability, and light exposure may all operate in initiating the process.